
Chapter 8

Extraction de Structures

Arborescentes

Résumé — Dans la partie précédente nous avons présenté un algorithme mettant
en oeuvre une collaboration entre le Fast-Marching et les Level-Sets pour la seg-
mentation. Dans ce chapitre, nous souhaitons présenter une application de cette
collaboration spécifiquement dédiée aux structures arborescentes du type arbre vas-
culaire.
Tout d’abord nous montrons comment le Fast-Marching permet de fournir une
présegmentation rapide et précise pour les structures arborescentes dans la sec-
tion 8.3.
Nous utilisons ensuite les Level-Sets de la même manière que dans la section 5.4 de
la partie précédente.
Finalement nous montrons comment le Fast-Marching, déjà utilisé pour l’extraction
de trajectoires dans la partie I, permet aussi d’extraire plusieurs trajectoires et
de remonter à l’information d’arbre ou de squelette d’un objet tubulaire avec em-
branchements multiples.

Abstract — In the previous part I, we detailed an algorithm using Fast-Marching

and Level-Sets in a collaborative manner for object segmentation. In this chapter, we
introduce an application of this collaboration specifically adapted to tree anatomical
structures, like vascular or arterial tree. First of all, we demonstrate in section 8.3
the ability to build a fast and accurate pre-segmentation for those tree structures
using a dedicated Fast-Marching algorithm.
We further apply the Level-Sets, as in section 5.4, for converging to a more accurate
solution.
Finally, we show in section 8.4 how the Fast-Marching ability to extract trajecto-
ries, as used in part I, can be extended to the simultaneous extraction of multiple
trajectories, and to obtain the underlying tree structure of a tubular anatomical
shape with several branches.
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8.1 Introduction

In the first part of the thesis, we have implemented several techniques to extract a
trajectory inside a tubular structure. We have shown application of this fast mini-
mal path-extraction process to automatic and interactive methods to extract lineic
structures in images. In the second part of the thesis, we have combined fast and
accurate methods for shape extraction, using the same kind of grey-weighted distance
transform algorithms. We have proved the ability of those techniques to extract sur-
faces, and to emphasize pathologies, in several applications. In the last part of the
thesis, we now want to integrate the path and surface extraction algorithms, in order
to present an accurate global framework for the segmentation, the visualization, and
the quantification, of anatomical objects. In the previous chapter, we have detailed
the algorithmic techniques to obtain representations and measures of our anatomical
objects, based on extracted primitives of our objects like shapes and skeletons. In
this chapter, we will present the basic framework, and extend its possibilities to the
detection of tree-like structures, and their corresponding set of multiple trajectories,
in order to enhance measures and visualization of pathologies of any tube-shaped
object.

This chapter will be illustrated by applications of the algorithms presented on the
segmentation and quantification of vessels in contrast-enhanced 3D medical images.

8.2 Motivation

We have seen in part II a method to use front competition for image segmentation.
This process involved to visit the whole image domain, and was not tuned for a
particular category of objects. Moreover, in huge images, as multi-slice CT scanners
(see application to lungs images in chapter 9.2), the visit of the whole image cannot
be done in interactive time.

8.2.1 Tree extraction

In this chapter, we are focusing on the extraction of thin tubular structures. Our
algorithms can be dedicated to this particular category of tube-shaped objects. If the
propagation of a front could be restricted to the part of the image occupied by those
structures, the computing time could be divided by almost 5, since vessels in a typical
MR-Angiography image do not exceed 10% of the whole volume.

In chapter 2, we have developed an algorithm that can be the basis of this kind
of tubular shape extraction object: a technique to evolve a front inside an object of
interest and compute at the same time the Euclidean distance to the start point. It
was used to reduce the user interaction to locating only one extremity of the path
inside a tubular structure. This Euclidean distance can be used to stop the front
propagation inside the desired object. If we have precise knowledge of its length, we
can decide to stop when this given length has been reached in the expression of the
Euclidean path length computation, as explained in section 2.2.3. The result of this
technique is shown in figure 8.1.
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Figure 8.1. Segmenting the colon volume with simple front propagation:
as in the virtual endoscopy facility, the user locate a starting point at one particular
recognizable part of the colon, then a front is propagated from this seed point until
a maximum path length is reached. Left image represents the datasets where the
intersection with the segmented object is visible in pink. Right image is the 3D
volume rendering of the final segmentation.

However, classical segmentation problems do not provide an excellent contrast
like the air-filled colon on a CT scanner, and the propagation cannot stick to the
object walls, as it is shown in figure 3.6. For example, if we apply the same kind
of propagation in the dataset shown in figure 3.12 for the endoscopy application in
chapter 3, the corresponding wave propagation looks like figure 8.2. The front floods

Figure 8.2. Wave propagation inside the aorta MR dataset: These three
images represent different steps of the propagation inside the aorta MR dataset
using Eikonal equation equation with a potential similar to the one defined for the
endoscopy application (a simple function of the grey levels either linear or non-
linear).

outside the object and cannot be used as an initialization step for a more complex
segmentation, like the combination of the Fast-Marching and the Level-Sets which
was presented in the previous part.

In the following section, we will present a new algorithm, based on the Fast-

Marching and dedicated to a quick and dirty segmentation of the tree structures in
3D medical images.
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8.3 Design of an adequate initialization algorithm

We have shown the possibility to provide efficiently an initialization for more com-
plicated methods in the previous part of the thesis. Setting up a framework for the
visualization and the quantification of thin tubular structures, based on the same
combination of the Fast-Marching and the Level-Sets, we show in this section how
the previous initialization step, which is not tuned for this kind of thin and long
objects, can be specifically optimized for this target.

8.3.1 Propagation Freezing for Thin Structures

Freezing a voxel during front propagation is to consider that it has reached the bound-
ary of the structure. When the front propagates in a thin structure, there is only a
small part of the front, which we could call the “head” of the front, that really moves.
Most of the front is located close to the boundary of the structure and moves very
slowly. For example voxels that are close to the starting point, the “tail” of the front,
are moving very slowly. However, since the structure may be very long, in order for
the “head” voxels to reach the end of the structure, the “tail” voxels may flow out of
the boundary since their speed is always positive. This is illustrated in the example of
figure 3.12. If we apply fast marching in the dataset shown in figure 3.12-top with a
potential based on the gray level with contrast enhancement the corresponding wave
propagation looks like figure 8.2. The front floods outside the object and does not
give a good segmentation.

For these reasons, it is of no use to make some voxels participate in the computa-
tion of the arrival time in Eikonal equation by setting their speed to zero, which we
call Freezing. First step is to design the appropriate criterion for selecting voxels of
the front which needs Freezing.

Concerning the application to the tree tracking, the several improvements brought
by this method are

• to accelerate the computations, by visiting a very small number of voxels during
propagation;

• to enable the segmentation of thin tubular structures;

• therefore enabling the centering inside those tubular structures.

First step is do design the appropriate criterion for Freezing voxels of the front.
We illustrate this Freezing principle on a synthetic branching structure in 2D.

Synthetic test problem

A synthetic example of a tree structure is shown in figure 8.3. In this case, setting an
initial seed point at the hierarchy, we would like to extract in a very fast process the
multiple branches of the structures, and its corresponding skeletonization, in a single
process. Figure 8.3 shows the result of the classical front propagation technique with
the Fast-Marching coupled with a maximum Euclidean path length stopping crite-
rion. The action map displayed clearly indicates that the domain visited is a whole
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Figure 8.3. Synthetic test problem: The left image is the medium where a front
has been propagated, starting at the root of the three branches, and stopping when
a maximum distance criterion of 300, computed according to method described in
section 2.2.3, has been reached; Right image is the corresponding action map.

“blob-like” structure where the underlying tubular shape is somehow lost. Therefore,
tracking a minimal path from the regional maxima of the action map will not lead
for sure to paths that stay inside the object of interest. It emphasizes the little use
of this method, without a clear constraint on the domain of points visited.

Using Time for Freezing

The heuristic presented in this section is to discriminate the points of the front that
are spending a long time in the propagating front, i.e. points that are visited but
whose action is not frozen, in the sense defined in table 2.1.

Unfortunately, this criterion is very difficult to manage, as shown in figure 8.4.
The results are non-predictable, and this is probably because the time spent in the

Figure 8.4. Instability of the Time criterion for Freezing: Left image is the
action map obtained with a maximum time criterion of 100 iterations; Other images
are freezing maps (white pixels) with respectively from left to right 100, 80 and 60
iterations as maximum time spent in the front.

front for a voxel is related to the local cost of the propagation at this voxel, but do
not have any relation with the position of the voxel relatively to the object that we
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are trying to segment.

Using Distance for Freezing

The distance to the start point is a direct output from the method we already devel-
oped for reducing user-intervention in the Virtual Endoscopy process in sections 2.2.3
and 3.1. It seems far more “natural” to use the distance to the starting point, or
relatively to the most far propagating part of the front, since this notion is com-
pletely embedded in the topology of the object we are trying to extract: the section
of a tube-shaped objects must be small towards its extent. We must discriminate the
points of the front that are near the initializing seed points while other parts of the
front are already far. It will prevent from flooding in non-desired area of the data.

We can fix several criterion for the Freezing based on the distance. Knowing
the current maximum Euclidean path length dmax in the front propagation process
we can decide that a voxel v of the propagating front (i.e. Trial voxels) should be
removed from the front (i.e. set as Alive voxel):

• if D(v) < dmax/α, with α ≥ 1 user-defined; or

• if D(v) < max (dmax− d̃, 0), with d̃ > 0 chosen.

The results are now predictable, in the sense that the Euclidean distance to the
starting point is a measure which contains information about the geometry of the
surface extracted, and in particular its length. This is less related to the local cost of
the propagation in each voxel, and more to the position of this voxel in the object.
This distance criterion has proven reliability as well in 2D as in 3D, and we worked
upon its implementation in the following. A 2D example on the synthetic test is
shown in figure 8.5.

Figure 8.5. Using Distance for Freezing: Left and middle images are action
maps with distance criterion of respectively 100 and 50; right image is a zoom on
the freezing map for a distance criterion of 50: the pruned points are set in green.
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Algorithmic implementation of the Freezing

Once the criterion has been chosen, at each time step we insert our visited points both
in the classical action related heap, and in another data-structure where the ordering
key is the criterion. As for the action, we can use a min-heap data-structure, since
the partial ordering provided is sufficient.

At each iteration, we are able to remove all the points whose keys are greater/lower
than this criterion, starting from the minimum/maximum element in the tree. It can
be implemented easily for the time criterion by recording the iteration at which any
point has been inserted in the heap, and to store this time in another min-heap data-
structure. Therefore, the element at the top of the heap will still be the point that
has spent the longest time without being evolved to the Alive set. For the distance
criterion, the min-heap key is the computed distance, which means that the element
at the top of the heap will still be the point that is the nearer Trial point to the
starting point.

In the following is detailed an algorithmic implementation of the Freezing with
the second criterion for the distance information.

Definition

• a starting point p0, located at the root of the tree structure;

• the usual set of data-structures for front propagation, including an action map A, one
min-heap structure HA and a penalty image P which will drive the front propagation,
and which is a function of the position only;

• a distance map D to compute the Euclidean minimal path length, as explained in
section 2.2.3;

• another min-heap data structure HD, where the ordering key for any point p is the
value of D(p), which means that the first element of this heap will be the Trial point
with smallest distance D;

• several counters dmax, d̃, dstop

Initialization

• initialize the classical front propagation method, setting A(p0) = D(p0) = 0 and
storing the seed point p0 in both min-heap structures HA and HD;

• dmax = 0

• d̃ and dstop are parameters for tuning the algorithm (user defined).

Loop: at any iteration

• Let pmin be the Trial point with the smallest action A;

• proceed according to the classical Fast-Marching algorithm, by examining its neigh-
bors, and updating the min-heap HA with the new action values computed;

• take dmax = max (dmax,D(pmin));

• consider qmin, the first element of HD, being the Trial point with the smallest distance
D. While D(qmin) < max (dmax − d̃, 0) do

– set D(qmin) = A(qmin) =∞;

– set qmin in the Alive set, then qmin will not be used for computing the ac-
tion/distance at its neighbors location.
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– delete qmin in both HD and HA;

• if dmax > dstop, exit the loop.

This heuristic is to discriminate the parts of the front that are propagating slowly,
by recording the maximum distance which has been traveled, and compare it to the
distance which has been traveled by this parts. If the ratio between those two distances
is two important (> given threshold), we ”freeze” those parts by setting there speed
artificially to zero. It enables to stay inside the object when it is long and thin like
tubular structure, as shown in figure 8.5. The domain visited by our algorithm is
slightly smaller than the previous one (figure 8.4-right) and this domain shortens
with the distance criterion, when we compare left and middle images in figure 8.5.
The figure 8.5-right clearly demonstrates than the Freezing principle discriminates
the points located far from the propagating fronts.

Illustration on the Vascular tree extraction problem

The method explained previously is very useful when it is used for vascular segmen-
tation. Initialization step is therefore performed in a very fast manner by just setting
a seed point at the top of the tree hierarchy. Figure 8.6 displays results of this algo-
rithm. The distance threshold is a parameter which is not very sensitive: we generally

Figure 8.6. Using Distance for Freezing in the Aorta: From left-to-right,
images show iterations of the segmentation process; the propagating front is in red,
and the frozen voxels are in white.

take a value related to the a priori dimensions of the object. This threshold must be
more important than the assumed maximum section of the object. It will approxi-
mately represent the volume of points bounded by connected envelope of the front
voxels that are not frozen.

8.3.2 Suitable stopping criterion

Having designed an adequate criterion for Freezing the unwanted parts of the front
that could lead to “flooding” of the evolving wave in other parts of the image, we now
explain our strategy to stop automatically the propagation.

Previous strategy was to use a maximum Euclidean path length to stop propaga-
tion, like for the virtual endoscopy application. In Virtual Endoscopy , the user can
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set both extremities of the trajectory, if he has an a priori knowledge of the anatom-
ical objects. Extraction of tree-like structures cannot use such an assumption: the
number of branches in our structure is undefined, only assumption being that the user
can fix a point inside the structure, at the beginning of the segmentation process.

The Freezing process will provide a criterion which is independent of the number of
different branches to recover. If we plot the maximum distance dmax of section 8.3.1,
as a function of iterations while propagating, we will observe the following profile
shown in figure 8.7. We clearly see that this distance increases linearly until a big
decrease of the slope appears. It is important to notice that this shock indicates when

Figure 8.7. Using Distance for Stopping propagation in the Aorta: The
images of the propagating fronts of figure 8.6 are super-imposed on the evolution of
the maximum distance crossed by the front propagation across iterations; it empha-
sizes that the decrease in the slope is related to the “flooding” out the aorta.

the front flows out of the object at “heads” of the front. We decide to stop front
propagation at this particular time. During the first part of the plot, the function is
quasi-linear. The slope is directly related to the section area of the tubular object.
By definition of Fast Marching, the number of iterations is equal to the number of
voxels that are alive. It means that passing through a certain length in the aorta
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implies to visit a number of voxels proportional to the length.
Let us assume that the global section of our aorta is constant in our dataset. This

is approximately true in large parts, but becomes a wrong assumption in the very thin
parts of the vessels and arteries. But we can assume that the front propagates at the
same speed inside the object. Therefore, the number of voxels visited is proportional
to the section area. Then the slope collapse can be easily detected using a simple
threshold on the slope, depending on the object we want to extract. Even if there are
aneurysms in the data set, and even if the mean section of the object increases with
the depth, we can assume that we do not want to extract an object which is twice the
maximum section. We could then derive a criterion on the maximum section of the
object Smax which is obviously related to the section area of the object of interest.
Recording the first iteration where the front flows out, it gives us the maximum
distance where we must stop propagation.

8.4 Extracting the skeletal information

In the following, we assume that we use the Fast-Marching and the Level-Sets in a
collaborative manner, in five steps:

1. the user input is a seed point for region-growing;

2. the Fast-Marching using the Freezing principle is evolved from this starting
point;

3. this evolution is stopped using either the distance, the user intervention, or an
automatic criterion;

4. the binary mask defined by the propagation gives the initialization of the region
based descriptors kin and kout, as used in section 6.2;

5. the Level-Sets model is evolved with equation 4.6 for a small number of itera-
tions.

The process is really similar to the framework detailed in section 5.4. The Fast-

Marching using the Freezing principle will act as a rough initialization step, which will
provide the binary image of the voxels visited. This mask will also serve to initialize
the different probabilities of the region descriptors defined in section 5.2. First row in
figure 8.8 shows the surfaces of several tubular structures extracted with the Freezing

algorithm. The domain of voxels visited during this first step is used to set correctly
the descriptors of the Level-Sets model, that converges in a few iterations to the
surfaces which are shown in the second row in figure 8.8. Notice that the scheme
used here is in equation (7.1), where forces have been included to restore the distance
function.

In this chapter, we do not implement dedicated algorithms based on the Level-Sets

methods. They are used in a very classical manner, to converge to sub-pixel accuracy
results, on the basis of as-hoc fast algorithms. However, the level of accuracy that
is achieved by the Level-Sets cannot be of course outperformed by the initialization
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Figure 8.8. Final segmentation of vascular objects: First row shows different
vascular objects that have been extracted with the Freezing algorithm - except
the example shown in last column of the right, where the method used was the
competitive fronts algorithm; Second rows is the final result of the segmentation
after 40 iterations.

method. The convergence step they achieved cannot be replaced in any way by the
Fast-Marching.

8.4.1 Combining path and shape extraction

The complete framework for path and surface extraction we have developed will be
illustrated in this section by results on a 3D-RA acquisition of a stenosed vessel,
which is shown in figure 8.9.

Figure 8.9. 3D-RA dataset of an aortic stenosis: left image shows three
orthogonal views of the dataset; right image is a MIP view of the same dataset.

We have shown in the part I of the thesis how to extract a trajectory inside
a tubular structure. In part II of the thesis, we have combined fast and accurate
methods for shape extraction of tube like objects. We now want to combine the
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results of both parts, and extend this facility to the detection of tree-like structures,
and their corresponding set of multiple trajectories, in order to enhance measures and
visualization of pathologies of any tube-shaped object.

We worked upon the extension of the trajectory extraction method, applied for
example to virtual endoscopy in chapter 3 to the case of multiple trajectories. For
example, the dataset in figure 8.9-left is a structure with branches, which pathology -
a stenosis - is clearly visible on theMIP view in figure 8.9-right. The complete study
of this pathology, with minimum interactivity, would be to extract its surface, and all
needed trajectories inside it, in order to give accurate measurements.

Techniques found in the literature

The combination of path and shape representation is a framework already studied as
well in Computer Graphics as in Computer Vision. In Computer Graphics, cylindrical
shapes description is done by implicit surfaces (in the sense of [13, page 223]) defined
by the convolution of a filter kernel with a skeleton. In other words, this distance

surface is a surface that is defined by distance to some set of skeletal elements, like
any curve. But in graphics, the target is to improve visualization and interactivity
over the representation of the object. However, it connects to vision because it is
often convenient to model a shape as a generalized cylinder as done in [132], for
reconstruction of anatomical shapes, as done in [175] by combining the fitting of a
generalized cylinder, and its symmetry axis.

In those methods, the central axis constrain the extraction, and models the tube-
ness of the final object extracted.

Our multiple path extraction method

In our case, the shape is initialized by Fast-Marching, thus a path construction
method, but we are going to use the solution at convergence of the Level-Sets in
order compute the final set of trajectories - i.e. the skeletal information of our object.
Therefore, shapes controls path extraction. This is exactly the kind of methods that
lead to accurate measurements and visualization of the objects:

1. It relies on a sub-pixel shape extraction model; thus the intersection of a cross
section plan and the surface is an improved measure of the objects, while cylin-
ders approximate the model.

2. The Level-Sets enables any change in topology, and there is no constrain on
the initialization of the model, how huge can be the number of branches in the
anatomical object.

3. The paths used for quantification are based on this robust surface extraction
model, increasing the robustness of the measures.

4. The user input is limited to the setting of the root of the tree hierarchy.

Our method is based on the construction of a connectivity map, by looking at several
chosen iterations to the connectivity of the propagating front (i.e. the Alive voxels)
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Figure 8.10. Multiple path extraction algorithm: From left to right, these
are connectivity tests made on the propagation of a wave inside a segmented object,
starting from the voxel designated by label 0, until the whole domain is visited.

and the connectivity of the sets of voxels visited, as shown in figure 8.10. Defining
a distance step, each time this step has been accumulated by the front, we label the
different sets of visited voxels, and we thus detect when a front separate, at a branch,
into several not connected sets.

When the whole domain has been visited, we take for each separate set a rep-
resentative voxels, which is the most far from the starting point, and we set it as
an applicant extremity for back-tracking a trajectory. Notice that the distance step
defines the accuracy of the method, since a too important step will lead to misunder-
standings: on the right image, only the extremity designated by the label 3 will be
eligible for back-tracking, while there are two branches, because the distance step is
bigger than both branches.

Multiple Path Extraction Algorithm

The algorithm we devised for multiple path extraction is mostly inspired from works
on skeletal extraction from binary, or scattered data. It can be easily compared to
morphological processes, but has two advantages: we can choose the scale or accu-
racy of the multiple path extraction, and we can derive this scale from anatomical
knowledge of the data studied. It is a complete framework in the sense that, the path
extraction relies here on a segmentation process which can be as well handled by the
Fast-Marching or the Level-Sets methods. This segmentation step defines a binary
maskM which is one of the main input of our algorithm:

Definition

• a binary mask M which defines the region of interest in the image;

• a penalty image P which will drive the front propagation;

• a distance map D, computed with the method described in section 2.2.3, and a distance
step d, user-defined parameter that controls the accuracy of the end-point extraction;

• a counter cd that recalls the iteration number of the loop in our algorithm;

• a label map L to label each branch detected, nL a label counter, and an array E which
will recall the hierarchy of the branches detected;

• a starting point p0, located at the root of the tree hierarchy.

Initialization

• M(i, j, k) = 1 for all voxel in the region of interest, elsewhere M(i, j, k) = 0;



168 8 Tree Extraction framework

• L(i, j, k) = −1 for all voxel in the image domain, nL = 0, and all elements of E [i] are
set to −1;

• We initialize the usual set of data-structures for front propagation, including an action
map A, the distance map D, and a min-heap structure;

• we initialize a classical front propagation method, setting A(p0) = 0 and storing p0 in
the min-heap structure; item the counter cd = d.

Loop

• we propagate the front with Eikonal equation, computed with penalty P on the domain
defined by the mask M;

• for each Trial point p visited in the Fast-Marching algorithm, L(p) is set to the label
of its current Alive neighbor with minimal action;

• if we visit a voxel p with D(p) ≥ cd:

1. we consider the set of Trial points T , that are all stored in the min-heap data
structure, we consider t1, . . . , tk its k subsets of connected components (with
26-connexity in 3D), obtained through a simple connectivity algorithm;

2. In all subset ti, i ∈ [1, . . . , k]

– considering the old label liold
, and the new label linew

, we set nL = nL + 1,
linew

= nL, and E [linew
] = liold

;

– for all the points p ∈ ti, we set L(p) = linew
;

3. cd = 2× cd;

4. we stop if the whole domain defined by M is visited.

Termination

• we consider all sets Lj , j ∈ [1, . . . , nL] defined by the label map L with different labels
lj ;

• we select the subset of Lk, k ∈ [1, . . . , nL], which have E [lj ] 6= −1 and ∀n ∈ [lj ;nL]
E [n] 6= lj ;

• ∀Lk selected, we find the voxel (i, j, k) with maximum distance D(i, j, k) and set it as
end point for back propagation;

• we back-propagate from all final voxel selected and extract a set of multiple trajecto-
ries.

Figure 8.11 shows several label maps L with cd = 10, 30 and 50. cd is the minimum
size of the branches detected, it is the scale of the algorithm accuracy. If this scale
is chosen small, lots of branches will be detected, but if the scale is increased, the
computation time will decrease as well, because it controls the number of connectivity
tests which are performed on the Trial voxels, during propagation.

illustration on the vascular tree extraction

In figure 8.12, one can observe the complete framework of Fast-Marching initialization
followed by several iterations, using Level-Sets methods, and finally, the extraction of
multiple trajectories inside two different datasets. The computations for the paths are
restricted to a small number of points, located inside the objects of interest (usually
less than 20% of the whole volume, leading to interactive computing times. Those
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Figure 8.11. Labeling algorithm for multiple path extraction: From left to
right, the images show the label map obtained with the multiple path extraction
routine applied with path steps 10, 30 and 50 respectively.

paths are already very useful for virtual inspection of pathologies, for example in the
aorta (as done in the section 3.1), or measurements along the trajectories extracted,
using the techniques detailed in section 7.2. Figure 8.13 shows the result of applying
the multiple path extraction algorithm explained previously. This set of paths is the
basis of the quantification techniques that can be applied on such a dataset (this aorta
presents an Abdominal Aortic Aneurysm).

Originality of this algorithm, towards front propagation techniques applied for
multiple path extraction, as in [101], where the set of endpoints is manually drawn in
the original image. In our case, all trajectories are extracted automatically.

8.4.2 From Trajectories to Tree Extraction

The trajectories obtained with our algorithm can guide virtual endoscopes. They
can also be used for quantification of pathologies, by measuring the variation of the
section of the object, across the curvilinear abscissae of the path extracted. But the
information of trajectory is not related to the whole branching structure and is just
the minimal centered path between two extremities. Therefore, the user is assumed
to know the position in the object of this trajectory. And those trajectories are not
related to each other, leading to possible misunderstanding in this position. Moreover,
this absence of spatial relationship between the paths and the surface disable the
use of further developments like automatic labeling of the branches, and accurate
localization of pathologies. In order to extract the information which is relevant in
order to analyze the surface of the tree-shaped object extracted, we need to extract the
underlying skeleton on the basis of our trajectories, as done in figure 8.14. The process
of extracting the tree structure from the trajectories is simple: during backtracking of
the trajectories, we adjoin those which are close to each other, creating a branching
point. The only parameter is the definition of proximity between trajectories.
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Figure 8.12. Complete method applied to several objects: First row is the
framework applied to the stenosed object of figure 8.9 and second row concerns the
aneurysm shown in figure 6.4 - Left column is the initialization given by the Fast-

Marching method; middle column is the surface obtained after a small number of
iterations of the Level-Sets method; right column shows the multiple trajectories
extracted with the labeling algorithm, by transparency.

Algorithmic implementation

As a second process, we can extract a skeleton of our object, from this set of multiple
trajectories. The initialization use the same input than the multiple path extraction
process, including the final end points extracted.

Definition

• a binary mask M which defines the region of interest in the image;

• a penalty image P which will drive the front propagation, usually this penalty map is
computed using the centering method described in section 2.3;

• the action map U computed with this penalty during the initial multiple path extrac-
tion;

• the starting point p0, located at the root of the tree hierarchy;

• the set of end points ei i ∈ [1;Ne] where Ne is the number of end points extracted.

• a distance step d which defines the minimum distance between two trajectories (this
distance step is chosen bigger than the gradient descent step).



8.4 Extracting the skeletal information 171

Figure 8.13. Multiple trajectory extraction from only one seed point:
This figure represents the projection on three orthogonal views of the complete set
of trajectories tracked in the aorta MR dataset which was segmented in figure 8.8
in the second row; the Freezing method for initialization with the Fast-Marching

algorithm has been used to extract centered trajectories.
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Figure 8.14. From trajectories to tree representation: Left image is a set
of trajectories extracted in a segmented object. right image represents the valuable
tree structure needed for quantification.

• another different label map L to label the voxels that are neighbors of a path, which
means that the distance between this voxel (i, j, k) and a path extracted is less than
d;

• an array E to recall the branches detected.

Initialization

• L(i, j, k) = −1 for all voxel in the image domain;

• ne = Ne and ∀i ∈ [1;ne], E [i] = 0.

Loop: for i ∈ [1;Ne]

• we back-propagate from ei, on the action map U using a simple gradient descent
method, as described in equation 2.6;

• at every path step, the position of the new path point is defined by (x, y, z) ∈ IR3

• we consider the vertices of the Cartesian grid that surround −→x = (x, y, z), the voxels
−→n = (i, j, k) ∈ IN3 which verify D2(

−→x ,−→n ) < d, where D is the Euclidean distance;
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• if, for all those vertices (i, j, k) ∈ IN3, L(i, j, k) = −1, we set L(i, j, k) = i, and continue
back-tracking for ei;

• else, if one of the vertices (i, j, k) verifies L(i, j, k) 6= −1, a branching point is detected,
then:

– recall the label l = L(i, j, k);

– ne = ne + 1, ene
= (i, j, k);

– E [i] = ene
and E [ne] = 0;

– stop back-tracking for ei;

– continue back-tracking, this time for ene
, substituting all L(i, j, k) = l by L(i, j, k) =

ne, until another branching point or p0 are found;

• if we reach p0, then stop back-tracking for ei.

Termination

• for all end point ej j ∈ [1;ne], we can consider the couples of endpoints (ej , eE[j]) as
extremities of linear parts of the skeleton (with e0 = p0).

• the multiple paths between couples of points (ej , eE[j]) j ∈ [1;ne] build the skeleton of
our object, at scale cd and distance d.

Figure 8.15 displays the result obtained on the dataset shown in figure 8.9. From

Figure 8.15. Obtaining a tree hierarchy from a set of trajectory: Left
image is the segmented object extracted from the dataset shown in figure 8.9; middle
image is a zoom on two bifurcations of the object, where the trajectories extracted
are displayed; right image is the same point of view on the translucent surface
extracted with the tree extracted from the set of paths.

the set of multiple trajectories, branching points are extracted, as shown in figure 8.15-
right.

Measurements on the tree

The computational cost of the tree extraction finds its justification in the improve-
ment of the measurements along the new set of trajectories available. Figure 8.16
compares the section measurements with multiple path extraction technique, and tree
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Figure 8.16. Comparing results with the multiple path extraction, and

the tree extraction: First row shows images of the segmentation process (a) plus
the multiple paths extraction, visible by transparency (b) and the region of interest
in green that isolate the aneurysm (c) along one of the trajectories; second row
shows the same images (d,e,f) using the tree structure extracted from the same seed
point; last rows shows the variation of the section along the paths that are inside
the aneurysms, for the complete trajectory (g) and for the branch (h).

extraction technique (dataset shown in figure 3.12). The tree extraction, as shown
by transparency on figure 8.16-(e) enables to measure the section along the necessary
subset of the object, delimited by the the two branching point (this subset has been
colored in green on the figure). If this information is plotted across a trajectory in
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the entire object, it is not useful for two reasons

• section information is not valuable at the branching points;

• the position of the part of interest cannot be obtained straightforwardly.

This problem is illustrated in the last row of figure 8.16. The plot of the object section
across the curvilinear abscissae of a trajectory is shown in figure 8.16-(g), versus the
same plot across a branch of the tree extracted in figure 8.16-(h).


